在文本挖掘中,像“and”或 “the”一类的常见词经常会被去掉,因为他们会稀释整个高频词汇表。有趣的是,在这个样本中这些词并没有被去掉,但竟也没有排到我们词频表的最前面。这说明两个问题:首先,无家可归者不太可能会去使用这些如此容易被预测到的词,可能是为了节省空间和提高浏览速度;其次,这也表明无家可归者使用“help” 和 “homeless”这些词的频率非常高,正如一般的文本使用“the”(4%)这类普遍的术语一样。 你可能会把上图的y轴看作是独立的一些单词,但是也可以把他们看作是一元语法(unigrams,比如大数据的unigram形式为:大/数/据),或者是N元语法(n-gram,语言学专业术语,表示n个单词组成的序列)的最简单形式。我们可以对二元词(bigram,两个单词组成的短语)的频率进行排序,如下: 【由于我们不能使用bigrams(双单词)的频率除以单词数量得到相对频率,所以x轴向左对齐表示绝对频率】 可以看到,第一个图表中一些单词的搭配在了上图中聚集到了一起。比如,“Please” 和“help”使用很频繁,它们联合在一起使用也很频繁,类似的还有“God” 和 “bless”。 需要注意到是,这种创建二元词(bigrams)、三元词(trigrams)和其他多元词的方式是根据原有文本来模拟产生新文本的基础。我们也可以尝试随机选择一些词来伪造一个自然的句子,通过这种方式得到的句子读起来跛脚可笑。但是如果你知道哪些序列是合理的,你就可以拼凑出短语和句子,就像拼火车一样。 一个简单的例子,假如你使用“please”作为开头,二元词(bigrams)频率表能预测下一个单词“help”,然后你可以连接到“thank,” “you,” “God,” 和 “bless”,即马尔可夫文本生成链,它是网络机器模仿人类写作的原理。 多元词(n-gram)的单词数越多,模拟的写作看起来就越接近于人类,因为你使用的基于真实文本的片段单元更长。下图是在无家可归者标语样本上使用trigrams生成短句的示例。其中一些结果看起来毫无意义,但其他的你能想象到或许是来自某个真实的标语: 上图:无家可归者标语模拟结果的截图 呃,这里我们使用这些标语生成假文本似乎玩笑开得有点过了,毕竟现在纽约及其他城市无家可归还是一个很严重的问题。我们的分析就到这里了。如果你对文本挖掘很感兴趣,并且想要进一步了解Andrey Kotov的这个项目或者其中使用的R语言知识,两者都提到了本文。你也可以查看博客使用的分析数据和程序,atv,链接在文章的最后。 最后,如果你想要帮助这些无家可归的人,可以捐款给Bowery Mission,它为纽约的流浪者提供住所、食物和衣服。 所有的分析数据和程序详见:https://github.com/PerplexCity/Sign_From_Below 原文链接:https://perplex.city/a-sign-from-below-2d4f12c243f3 关于转载 如需转载,请在开篇显著位置注明作者和出处(转自:大数据文摘 |bigdatadigest),并在文章结尾放置大数据文摘醒目二维码。无原创标识文章请按照转载要求编辑,可直接转载,转载后请将转载链接发送给我们;有原创标识文章,atv,请发送【文章名称-待授权公众号名称及ID】给我们申请白名单授权。未经许可的转载以及改编者,我们将依法追究其法律责任。联系邮箱:[email protected]。 志愿者介绍 回复“志愿者”了解如何加入我们 往期精彩文章 一位缺觉的父亲记录了他双胞胎宝宝的睡眠数据 并交给机器学习,结果…… (责任编辑:本港台直播) |