CrossbarReRAM技术具有众多特性,可以实现多种全新的存储解决方案类别。Crossbar ReRAM单元的内置选择特性允许不同的内存阵列配置,一个晶体管可以驱动一个或者成千上万个内存单元,从而实现了针对不同目标应用的灵活设计:嵌入式代码存储的快速读取和处理器的直接执行,或者对存储数据的高密度、低延滞读取。 Crossbar ReRAM技术相较于NAND闪存能够将读取延滞降低到1/100,将写入速度提升20倍,而且还可以不受限制地对数据进行反复擦除。CrossbarReRAM技术可以以小页模式建构,可以被独立地擦除或者重新编程。通过移除无用单元回收所要求的大量后台内存读取,这种全新的存储架构大大简化了存储控制器的复杂度。该技术的写入放大率为1,从而为用户带来低的读写延滞、更低功耗以及存储解决方案更长生命周期的好处。 凭借这些突破性的性能和可靠性、超高的容量、低功耗以及针对多种存储架构的可调性,Crossbar将为消费电子、企业存储、移动计算、工业/汽车/医疗、物联网以及可穿戴设备应用带来一波新的创新。 性能 为了在用户端维持令人满意的性能指标,固态硬盘(SSDs)存储系统设计师们不得不开发复杂的架构和算法,以应对3D MLC/TLC NAND闪存所固有的设计局限。当NAND制造商试图通过缩减设计从而降低成本时,复杂的系统在实际的用户案例中对性能产生了影响,从而导致了SSD测试基准中出现的主要的系统瓶颈问题。
NAND闪存程序运作很缓慢,并且是在大型页面的粒度上完成的。当今的MLC/TLC NAND或者3D NAND闪存需要600微秒到1毫秒来对一个8-16K字节的页面进行编程。对于典型的用户案例来说,这个速度太慢了,所以每一个程序运作必须首先被重新导向到一个位于临时位置的写入缓存,比如一个SRAM或者DRAM缓存或者一个以SLC模式配置的NAND分区。 NAND闪存在进行编程前必须进行擦除。NAND的擦除操作非常慢,需时10毫秒左右,并且在一个非常大的4-8兆模块中进行。为了克服这一重要的设计局限,可以让SSD控制器来管理逻辑到物理(L2P)映射,对原始和校正数据位置进行追踪,并使得在必须进行模块擦除操作前推迟该操作成为可能。 释放单元回收代表了数据管理的另一个附加层面,它被要求用于在存储器处于空闲模式时正确释放模块中的无用数据。当释放单元回收在模块间转移数据时,新产生的请求可能产生问题。这是一种典型的惩罚,会导致长达数秒的冗长的、不确定的延滞。 因此,对于一次SSD的写入,通常会有几次SSD控制器、NAND闪存和DRAM部件之间的后台内存操作。这被称为写入放大(WA),它可以用来衡量控制器的效率。大部分系统的WA通常在3-4之间。更高的WA数值会直接影响存储设备的可靠性和性能,因为它放大了对设备写入的次数,使得一个单元处于速度快得多的最高周期。这点在相对更小的技术尺寸上显得更为相关,在这些技术尺寸上,NAND内存单元的最高周期降至3000程序周期以下。 这些复杂的问题很大程度影响了终端用户的体验,并解释了与SSD制造商所提供的SSD规格相比较,为什么SSD基准测出的性能会有所不同。在按此写入的情况下,假如用户想从网络上下载一部高清电影到本地存储器上,或者当企业存储广泛使用SSD时,这些问题将无法掩盖NAND闪存技术固有的设计局限。
CrossbarReRAM技术无需在编程前进行擦除操作。对ReRAM的单次写入可以在很小的页面颗粒上非常快地完成。下一代针对ReRAM进行优化的SSD控制器将能够以更快的速度更新更小的页面,并大幅降低NAND所需要的后台内存操作。基于ReRAM的SSD将提供更低、更确定的读取延滞(数十微秒)。 密度 Crossbar拥有专利的转换器设备解决了高密度ReRAM开发人员面临的最大技术挑战之一,它被称为潜泄电流(或漏电流)。Crossbar的3D ReRAM存储解决方案是基于1TnR阵列(1个晶体管驱动n个电阻式内存单元),其选择率使得让一个晶体管管理很大数量的内联的内存单元成为可能,从而实现很大容量的固态存储。在1TnR模式下,1个晶体管能够以非常低的功耗驱动超过2000个内存单元,但也会遇到潜泄电流的漏电问题,对典型ReRAM阵列的性能和可靠性产生干扰。Crossbar拥有专利的电场辅助超线性阈值转换器设备解决了这一漏电问题,它采用了一个超线性阈值层,里面有一个在阈值电压值上形成的易变性传导通路。这样的电场辅助超线性阈值设备是业内第一个能够将泄露电流抑制在0.1纳安之下的转换器,并已在一个4 Mbit整合3D堆叠式被动Crossbar阵列中成功实现。 (责任编辑:本港台直播) |