关于人工智能活动的一般说法,就是在过去20年的人工智能研究中所种植的种子今天正在结果。新的算法,特别是卷积和复现神经网络,正在提供更有效的结果。训练数据的可用性的对数级增加使得调整机器学习算法以提供准确的预测成为可能。图形处理单元(GPU)的开发已经将训练神经网络所需的时间减少了5倍到10倍。 并且在过去五年中,公众对人工智能的认识提高了六倍,因此提高了买家对这项技术的兴趣。 其他一些因素也正在推动新的人工智能创业公司的产生。在过去的五年内,因为投资者看到了该领域的前景,人工智能公司的风险投资基金增长了七倍。行业云提供商(谷歌,亚马逊,微软和IBM)所提供的人工智能基础架构和人工智能服务降低了部署机器学习解决方案的难度和成本。而开源AI软件(特别是机器学习组件库TensorFlow)的成长降低了参与机器学习的障碍。根据持续的风险投资资金,我们预计英国的高水平人工智能创业将持续下去。 新兴人工智能公司主要集中在哪里呢? 在新兴的人工智能公司中,人力资源业务功能和金融部门所占比例最高(图6)。 三分之二的人工智能人力资源公司和人工智能财务公司还不到两岁。 人力资源领域最近的活动源自于行业内发生的范式转移。人力资源正从一个管理记录的系统发展成为一个关于预测增长和效率的驱动者。企业主正在寻求利用以前未充分利用的数据集来提升应用效果,atv,应用范围包括基于能力的员工招聘到关于员工流失的预测模型。 令人惊讶的是,在商业智能,安全和合规功能,以及零售部门和基础设施部门范围内,新的人工智能公司占的比例较低。 随着机器学习的大数据集的成熟发展,这些部门曾经首先吸引人工智能企业家的。 4. 一个相对于全球同行的新生行业 与全球同行相比,英国人工智能领域处于新生阶段,既带来了机遇,也带来了挑战。 今天,相比于美国同行的一半比率,有四分之三的英国人工智能公司处于他们自身旅程的最初阶段,就是所谓的“种子”或“天使”资金阶段(图7)。另一方面,在每10个英国人工智能公司中只有一个处于晚期“增长资本”阶段,而在美国却是每五个人工智能公司中就有一个。2015年,我们数据可用的最后一个整年,几乎所有有资本输入的英国人工智能公司都还处于天使,种子或A系列阶段,而在全球人工智能领域内,已经有三分之一的公司收到了后期资金(图8) 。 这种动态现象既呈现了机会,也隐藏着风险。一个充满活力的创业场景为处于初期的公司的企业家,员工和投资者提供了无与伦比的机会。与此同时,更加发达和资金富裕的海外竞争对手可能会提高英国公司的竞争压力。这种影响可能因高比例被出售给大企业的人工智能公司而加剧,其中许多竞争者来源于全球的供应商。英国持有宝贵可以用于人工智能研究的资产,包括拥有四分之一的世界排名前25的大学,以及一个出现了了Deep Mind,SwiftKey,Magic Pony和其他英国人工智能公司而不断增长的人工智能从业者和投资者的生态系统。 5. 营利的旅程可能会更长 超过40%的我们遇到的人工智能公司尚未产生收入(图9)。 这并不是因为我们遇见的是处于初期阶段的公司; 我们遇到的公司中,处于中位数位置的公司是一个创立于2 - 3年前,已经筹集了130万英镑,有一个有9个人并且每月花费7,6000英镑的团队。 大多数人工智能公司,至少应用型的人工智能公司,计划获得预收入而不是销售软件和服务的想法是一个神话。 我们遇到的所有公司都在实施或开发货币化计划。 那么,为什么一些人工智能公司比其它领域处于初期阶段的公司花费更长时间才实现货币化或规模化? 我们总结出以下四个原因: 在这个技术上有挑战性的领域,最低可行产品(MVP)的标准可能更高,需要更长的开发周期。 90%的AI公司是B2B公司。 在B2B销售中典型的长销售周期会在AI公司中加剧,这是因为许多AI公司专注于分散而敏感的数据,如财务数据 。 (责任编辑:本港台直播) |