本课程为所有寻找机器学习基础课程的 Python 使用者设计。课程涵盖监督学习、无监督学习和深度学习算法的理论和实践。在这系列视频中,你将能够了解线性回归、K-最近邻法、支持向量机(SVM)、扁平聚类、层次聚类和神经网络。本课程还讨论了使用实际数据集,每个算法在现实生活中的应用。此外,通过使用代码重建每个算法,你将能够了解它们的工作原理。本课程将帮助你全面了解算法的工作原理,以及如何应用。 5. 导论:Python 数据科学
时长:6 Lectures 地址:https://www.youtube.com/watch?list=PL2-dafEMk2A6QKz1mrk1uIGfHkC1zZ6UU&v=T5pRlIbr6gg 这是另一个 Python 数据科学教程。如果你由于工作忙碌无法抽出时间系统学习数据科学,那么这系列的视频是不二之选。这系列一共6个视频,每个时长7分钟,涵盖的主题包括情感分析、推荐系统、预测股票价格等数据科学应用,以及如何使用 Python 和 TensorFlow 构造神经网络,介绍遗传算法等。本课程要求对 Python 有基本的了解。 6. SciPy 机器学习导论课
时长:3小时 地址:https://www.youtube.com/watch?v=OB1reY6IX-o 这是 Sebastian Raschka 和 Andreas Muller 在2016年7月的 SciPy 大会上的专门课程。本课程中,Sebastian 介绍了机器学习和 Scikit 学习及其应用实例,以及 Python 的多种计算工具:NumPy,SciPy 和 matplotlib。Sebastian 还解释了使用 Iris 数据集实践机器学习的数据呈现。Andreas 介绍了监督学习中的分类和回归算法,Sebastian 接着解释了用于无监督学习的聚类。本课程能让你熟悉 scikit-learn 接口,scikit-learn 是广泛使用的一个 Python 库。本课程还提供了使用 Titanic 数据集建立预测模型的实践指导。 7. Python Pandas数据分析
时长:31 Lectures 地址:https://www.youtube.com/watch?list=PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y&v=yzIMircGU5I Pandas 是一个用于数据分析、处理和可视化的全功能 Python 库。由于其易读性和多用途性,Python 通常是初学者开始数据科学学习的热门选择。本教程面向希望了解大量数据及开始使用数据科学的 Python 使用者。本系列共31个视频,将介绍 Pandas 及其用途,演示数据分析中的每个步骤。 8. CS50 机器学习课程
时长:1小时30分 地址:https://www.youtube.com/watch?v=G-kiewt438M&t=560s 这是哈佛大学和耶鲁大学的 CS50 机器学习课程中的一节。这个视频介绍了机器学习及其应用。对所有程序员来说,这是最好的一个教程,将让你开始使用 Python 进行机器学习。该视频介绍了机器学习的基本概念以及机器学习如何影响我们今天的生活,将让你了解机器学习如何应用于构建搜索引擎、图像识别、语音识别和自然语言处理,教你使用 Python 和文本聚类进行图像分类。 9. Pandas 初学者的数据分析和处理教程
时长:3小时30分 地址:https://www.youtube.com/watch?v=6ohWS7J1hVA 如前所述,Pandas 是流行的 Python 库。这个教程将带你使用 Pandas,用 Python 进行数据分析和处理。Pandas 生态系统正在扩大,它的用户友好性质使得数据分析更简单。本教程面向任何想要开始使用 Python 进行数据分析的初学者,使用气候数据集演示 Pandas。 10. 什么是人工智能
时长:9分21秒 地址:https://www.youtube.com/watch?v=kWmX3pd1f10 (责任编辑:本港台直播) |