1961年一部纪录片的节选,强调人工智能研究长期以来的观点:如果可以编程计算机模拟高阶认知任务(比如数学或象棋),就能沿着这种方法最终会开发出类似于意识的东西。来源:Roberto Pieraccini/YouTube/NYT 但符号 AI 系统能做的事情是有限的。20世纪80年代,CMU 的一位机器人研究员指出,让计算机做成人能做的事情很简单,但让计算机做一岁儿童做的事情几乎不可能,比如拿起一个球或识别一只猫。到20世纪90年代,尽管在国际象棋上取得了很大的进步,我们仍然离通用人工智能很是遥远。 关于 AI 还有一个不同的看法,这种观点认为计算机将从底层(数据)而不是从顶层(规则)学习。这个概念可追溯到20世纪40年代初,当时研究人员发现灵活自如智能的最佳模型就是人类大脑本身。说到底,大脑只是由神经元组成的,神经元之间可以相互通电(或不通电)。单个神经元并不重要,重要的是神经元的整体连接。这种简单的结构为大脑提供了很多优势,能够适应环境。大脑可以在信息很差或缺失的情况下工作;可以承受重大的损害,也不会完全失去控制;可以以非常有效的方式存储大量的知识;可以清楚区分不同的模式,同时又保留足够的混乱以处理歧义。 你可以用电子元件模拟这种结构,1943 年的实验表明,简单的人工神经元网络可以执行基本的逻辑运算。这些电子元件至少在理论上,可以学习我们人类做事的方式。在生活中,我们会通过各种试错改变神经元对之间的突触连接的强弱。人工神经网络也可以做到类似的事情,通过不断试错,改变人工神经元之间的数字关系。人工神经网络不需要使用固定的规则预编程,它可以改变自身以反映所吸收的数据中的模式。 这种对人工智能的看法可以说是演化论而不是创造论。如果你想要一个灵活的机制,能够适应环境,你最开始就不想灌输它固定的规则。你可以从非常基本的能力——感官知觉和运动控制开始,希望更高的技能有机地出现。人类不是通过背诵字典和语法书学习理解语言,所以为什么要让计算机这样做呢? 谷歌大脑是第一个对上述想法进行商用投资的机构。Dean、Corrado 和吴恩达(兼职)开始合作,立即就取得了进展。他们从最近的理论大纲以及自20世纪80年代和90年代的想法中吸取灵感,并利用谷歌无与伦比的数据储备和庞大的计算基础设施。他们将大量“标记”数据输入网络,计算机的输出不断改进,愈发接近现实。 “动物演化出眼睛是一个巨大的发展,”Dean 有一天告诉我。我们像往常一样坐在会议室里,Dean 在白板上画了一条繁复弯曲的时间线,表现 Google Brain 以及这个团队与神经网络的历史关系。“现在计算机也有眼睛了。我们可以以此为基础让计算机理解照片。机器人将得到彻底地改变。机器人将能够在一个未知的环境中,处理许多不同的问题上。”他们在机器人身上开发的这些能力可能看起来很原始,但其意义却是深远的。 2. 多伦多大学教授 Hinton 成为谷歌的实习生
Geoffrey Hinton 在谷歌多伦多办公室。他的想法为谷歌神经网络机器翻译方法奠定了基础。来源:Brian Finke for The New York Times Dean 表示,Google Brain 成立后一年左右,开发具有一岁儿童智力的机器的实验取得了巨大的进展。谷歌的语音识别团队将其旧系统的一部分改为神经网络,并且效果得到很大提升,甚至取得了近 20 年中最好的成果。谷歌物体识别系统的能力也提高了一个数量级。这不是因为Google Brain 团队成员在短短一年间产生了一系列超棒的新想法,而是因为谷歌终于投入了资源——计算机和越来越多的人力。 Google Brain 成立的第二年,Geoffrey Hinton 加入了,而吴恩达则离开(现在是百度首席科学家,领导 1300 人规模的 AI 团队)。Hinton 当时只想离开多伦多大学在谷歌待三个月,所以由于各种原因,谷歌不得不被聘他为实习生。在实习生培训过程中,辅导人员会说“输入你的 LDAP(及用户登录码)”,atv直播,Hinton 会举手问:“什么是 LDAP?”在场所有二十几岁的年轻人,只知道人工智能的皮毛,都在想“那个老家伙是谁?为什么他连 LDAP 都不懂?” (责任编辑:本港台直播) |