互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示得更充分,信用评分就会更加客观,atv,接近借款人实际风险。 百度金融主要是打通“人+手机+设备+IP”(如手机号、身份证号、设备号、网络账号等)等关联纬度,基于全网行为进行监测,捕捉高危行为特征,在贷前准入方面就开始排查风险,进行反欺诈识别,生产黑名单,对借款人的行为进行预测。在贷款后,也会对借款人贷后行为进行跟踪和监测,只要触发预警规则,也会激发提醒。 百度金融的这种做法的逻辑和微众银行其实非常相似,思路都是找到“坏客户”,然后降低平均风险。除此之外,百度金融此前还和中信银行合作成立“百信银行”,合作开发金融产品。实际上,atv,这种做法一方面是为了获取渠道,另一方面,也是双方互相补足征信数据的一种做法。此外,百度旗下的O2O业务也能为其数据积累奠定一定的基础。 在金融业务和风险控制这两方面,金融机构有天然的优势。金融是一个强监管和门槛较高的行业,金融机构多年积累的风险甄别能力,以及对金融的理解和产品的设计能力,这些是很难被互联网公司所取代的。百度金融和中信银行之间的关系是百度的壁垒所在。 网易金融构建北斗七大风控模型 相比于蚂蚁金服是靠大而全的数据构建的风控体系以及微众银行、百度金融的滤网型风控体系,网易金融更注重全流程构建风控体系,并在关键节点上进行风险控制。 网易北斗是网易金融构建的智能风控平台,其风控流程和其他平台一样,都分成了贷前、贷中、贷后这三个部分,但是网易北斗把贷前、贷中、贷后分得更为细致——网易北斗在贷前做了获客引流模型、反欺诈型模型以及风控授信模型,先构建了筛选机制。在贷中又做了信贷管理模型,确定放贷的金额以及调查还贷能力等。在贷后还有风险预警模型、云催收模型和用户增值模型,一方面可以防止出现坏账的情况,另一方面也是在判断用户未来的业务合作以及增值空间,为后续的二次贷款做好准备。 网易金融不仅做好自家平台的风控体系,并通过和银行、传统金融机构合作赋能的方式释放自己的大数据风控能力。一方面是做了魔镜精准营销服务平台这个大数据一站式精准智能营销系统,帮助传统金融机构获客及精准营销。另外一方面也是通过网易七鱼这个全智能云客服专家系统,帮助传统金融机构解决各项问题,让银行提升审批效率和降低成本。在获客和解决问题的同时,实际上网易金融的深度学习系统也在不断提升,并且未来很可能可以与这些金融机构有更多在数据方面的合作。 虽然说网易金融在大数据风控方面的能力和蚂蚁金服有一些差异,但是在今年9月,清华大学在和网易金融建立金融科技中心的基础上,和蚂蚁金服也签署了合作协议,网易金融事实上和蚂蚁金服在风控层面上有一些数据合作。这对于双方的大数据积累、风控能力提升都有一定的帮助作用。 除此之外,魔镜精准营销服务平台以及网易七鱼这样的云客服专家系统也是体现了网易金融在智能风控领域注重实用性的一面。也难怪今年乌镇世界互联网大会上,丁老板对媒体说,“我们肯定在这些方面(人工智能)是遥遥领先的!” 京东金融一手靠消费一手靠合作 京东做风控主要是靠消费金融来驱动,通过京东商城庞大的交易数据为基础,覆盖了物流、用户等京东生态体系内的所有有效数据,不断构建大数据基础以及风控系统。 2015年6月份,京东还投资了美国互联网金融公司ZestFinance,且成立名为JD-ZestFinanceGaia的合资公司,以将后者的信用模型应用于京东的消费金融体系和风控模型。京东在国内的合资风控公司也即将开业,参股公司还包括数据银行聚合数据、个人信贷风控公司聚信立。做这一系列的布局,其实也表明,京东在通过这种合作的方式不断完善自家数据。 在京东生态圈之外,京东金融通过各种合作、投资模式,获取到更多的生态数据。比如说京东金融投资了不少汽车租赁平台,切到汽车后市场。另外,京东也和百安居之类家装平台进行合作。京东一方面是在支付、供应链、产品众筹等领域和合作伙伴展开合作,另外一方面也是不断通过合作、投资的方式不断拓展到生态体系外的其他场景之中,不断丰富自家的数据。 (责任编辑:本港台直播) |