在之前的研究中,Poggio 的团队已经训练神经网络展现出恒定表征,从根本上来讲,是通过记忆一系列有代表性的人脸特征,Poggio 称之为「模板」(templates)。当神经网络看到一张新的人脸时,它会自动判断这张脸与这些模板的不同之处。如果这张新的人脸特征与模板中人脸的特征相同,那么区别就会非常小,结果就会在最顶层分析后直接输出。新的人脸和模板的区别也会为这张新面孔赋予可识别的特征信息。 在实验中,这种方法得到了恒定的表征:不管其方向如何,一张脸特征信息差不多都是一样的。但是 Poggio 说,其中的机制——记忆模板(memorizing templates)——却并不是生物上可信的(biologically plausible)。 所以这个新网络转而使用了一种依据赫布定律(Hebb's rule)的变化——这一定律通常在神经科学文献被描述为「一起放电的神经元是连接在一起的」。这意味在训练过程中,为了得到更准确的输出,随着节点之间连接的权重的调整,会对特定刺激联合做出反应的节点最终会比独立反应的节点(并非所有)给最后的输出贡献更多。 这种方法也会产出恒定的表征。但该网络的中间层也复制了灵长类动物大脑的中间视觉处理区域的镜像对称反应。 「这是个巨大的进步,」Allen 脑科学研究所的首席科学官 Christof Koch 评论道。「现在的科学研究一直注重大数据和大型计算机模拟,而这一研究显示了原理解释的重要性。他们正在谨慎地开展研究——目前只关注前馈通道——换句话说,前 80-100 毫秒的处理。猴子张开它的眼镜,80 到 100 毫秒内,它可以看清一张脸并按下相应的按钮作为表示。问题的一切都会在这一瞬间被解决,他们对这个过程的解释看起来很棒。」 原文链接: ©本文为机器之心编译文章,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |