本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【图】百度发布「交互新闻」,新闻bot是未来?(2)

时间:2016-12-03 14:50来源:118图库 作者:开奖直播现场 点击:
根据 Donald W Reynolds 的说法,人工智能系统在进行新闻创作时需要解决非常多的技术难题,包括自然语言处理中的自动摘要、文本分类等,还有知识库和知

根据 Donald W Reynolds 的说法,人工智能系统在进行新闻创作时需要解决非常多的技术难题,包括自然语言处理中的自动摘要、文本分类等,还有知识库和知识发现(KDD)等相关技术,比如实体定义、关系抽取、问答系统等。简单来说,就是机器首先需要理解自然语言,然后通过知识管理弄明白新闻中各个要素(各类知识)之间的关系。而百度这次的交互新闻更是加上了自然交互,实现这些和背后的众多自然语言处理技术都密不可分。百度主要通过以下技术来解决这些问题。

首先,在语义表示方面。它是指将文本中蕴含的语义信息进行表示,表示成更简单、明确、易懂的形式。而 DNN 文本语义向量表示,将词语、短语、句子等文本转化为低维向量,转化成机器可计算的形式,方便衡量文本中的信息。Word Embedding 和深度学习的结合很好的解决了这个问题。

其次,在语义匹配方面。我们可以根据文本语义的相似性进行匹配、排序等,如 Query 和网页、Query 和广告、问题和答案等。SimNet 是一系列基于神经网络的机器学习模型,采取有监督学习的方式,采取 Pairwise Rank Loss 的学习策略。利用大规模有监督数据上训练(如,点击日志)进行训练。目前包含 BOW(Bag-of-Words)、CNN、RNN 多种神经网络模型。SimNet 语义匹配计算,基于神经网络模型,利用大规模有监督数据上训练(如,点击日志)进行训练,进而实现语义匹配。

第三,文档摘要。单文档摘要模块是从原始的新闻文档中提炼出最重要的信息来生成新闻的精简版本。本模块通过对新闻文档的类别、结构进行分析,以及特征的学习等方法实现自动为各类新闻提供精简摘要的功能,atv,为用户提供最核心的信息。为满足展现、播报等不同需求,支持短摘要、微摘要、长摘要和播报摘要四种不同的摘要计算模型。

自然语言处理技术所有信息密集型处理过程的核心,也是今年以来谷歌、Facebook 和微软等科技巨头都最为重视的研究方向,在刚刚结束的语言学顶级会议 ACL 上,他们也都发表了众多重磅论文。谷歌开源了 SyntaxNet,将神经网络和搜索技术结合起来,在解决歧义问题上取得显著进展——能像训练有素的语言学家一样分析简单句法;Facebook 推出了文本理解引擎 DeepText,每秒能理解几千篇博文内容,语言种类多达 20 多种,准确度近似人类水平。

自然语言处理技术的成熟为内容的组织和交互提供了基础,而交互新闻这种产品形态的出现则是让我们看到了新闻 bot 的前景。

今年可以被称为 bot 元年,谷歌、Facebook 和微软都在积极开发自己的 bot 平台,希望创造一种全新的连接用户与服务的方式,来解决那些容易无聊的、重复乏味的以及纯体力消耗的工作,聊天机器人将为商品、服务和信息的无障碍获取提供保障。而新闻阅读就是其中一种。

诚然,目前你的自然语言处理技术离那种完全通过自然交互来极其准确的获取内容的目标还有些距离,但这至少让我们看到了改变的开始。《浅薄》中提到,互联网作为一种智力工具,在给我们带来便利的同时也在重塑着我们的思维方式。随之而来的问题是,互联网这种媒介传递的信息越多,我们想找到优质或者自己所需信息的难度也就越大。而这正是交互新闻的优势所在,它可以让大数据从负担变成便利,会重塑媒体的内容生产、分发和体验。

电影末尾 Samantha 在与男主角的告别中说到:「It's like I'm reading a book... and it's a book I deeply love. But I'm reading it slowly now. So the words are really far apart and the spaces between the words are almost infinite. I can still feel you... and the words of our story...」

「这就好像我在读一本挚爱之书。但这一次我要慢慢地读,细细地品味。所以这字词与文句的空白和间隙似乎便延展成为无限。我能感觉到你,以及我们在这字句之间的故事。」

一个用人工智能机器学习来实现信息重构的过程,就这样通过一种浪漫主义思维表达出来。从新闻机器人起始,这样动人的科幻未来可能已经不远了。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容