本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】深度学习与神经科学相遇:不同脑区优化成本函数程序化实现分析(5)

时间:2016-11-27 21:29来源:668论坛 作者:j2开奖直播 点击:
不是所有的学习过程都需要一个通用的优化机制,如梯度下降。许多关于神经皮质的理论(George and Hawkins, 2009 ; Kappel et al., 2014 )强调潜在的自组织和无监

  不是所有的学习过程都需要一个通用的优化机制,如梯度下降。许多关于神经皮质的理论(George and Hawkins, 2009; Kappel et al., 2014)强调潜在的自组织和无监督的学习属性,可以消除多层反向传播的需要。 根据突触前后活动的相关性来调整权重的神经元Hebbian可塑性理论已经被很好的确立。Hebbian可塑性(Miller and MacKay, 1994)有很多版本,例如,加入非线性(Brito and Gerstner, 2016),可以引发神经元之间的不同形式的相关和竞争,导致自我组织(self-organized)的眼优势柱(ocular dominance columns)、自组织图和定向列形成(Miller et al., 1989; Ferster and Miller, 2000)。通常这些类型的局部自组织也可以被视为优化成本函数:例如,某些形式的Hebbian可塑性可以被视为提取输入的主要分量,这最小化重建误差(Pehlevan and Chklovskii, 2015) 。

Auto-encoders 这类人工神经网络就是上述功能的代表。

  为了生成复杂的具有时间关联的学习模式,大脑还可以实现任何与不需要通过多层网络的完全反向传播等效的其他形式的学习。例如,“液体状态机”(Maass et al., 2002)或“回波状态机(echo state)”(Jaeger and Haas, 2004)是随机连接的复现网络(recurrent net),其可形成随机的基础滤波器集合(也称为“库滤波器),并利用可调谐的读出层权重来学习。体现混沌(chaotic)和自发动力(spontaneous dynamics)的变体甚至可以通过将输出层结果反馈到网络中并抑制混沌活动(chaotic activity )来训练(Sussillo and Abbott, 2009)。仅学习读出层使得优化问题更简单(实际上,atv,等价于监督学习的回归)。此外,回波状态网络可以通过强化学习以及监督学习来训练(Bush, 2007; Hoerzer et al., 2014)。随机非线性滤波器的储层(reservoirs)是对许多神经元的多样化、高维度、混合选择性调谐特性的一种解释,例如这种现象存在与大脑前额叶皮质中(Enel et al., 2016)。其他学习规则去仅修改随机网络内部的一部分突触的变体,正发展成为生物短期记忆(working memory)和序列生成的模型(Rajan et al., 2016)。

这段读起来非常吃力,但值得注意的是其中提到的只对输出层进行无监督训练的方式,是否一定能使优化变得简单呢?可以尝试做实验验证一下。另外,局部自组织,也可理解为“局部无监督学习”。

  2.2 优化的生物学实现

  我们认为上述局部自组织的机制可能不足以解释大脑的强大学习表现(Brea and Gerstner, 2016)。 为了详细说明在大脑中需要有效的梯度计算方法,我们首先将反向传播置于其计算的上下文环境中(Hinton, 1989; Baldi and Sadowski, 2015)。 然后我们将解释大脑如何合理地实现梯度下降的近似。

这里厉害了,gradient approximation (梯度近似)是深度学习里最迫切需要解决的问题,因为这样将大大减少对计算资源的消耗。

  2.2.1 多层神经网络对高效梯度下降的需求

  执行成本函数优化的最简单的机制有时被称为“旋转”算法,或更技术上称为“串扰”。这种机制通过以小增量扰动(即“twiddling”) 网络中的一个权重,以及通过测量网络性能(对比成本函数的变化,相对于未受干扰的权重)来验证改进。 如果改进是显著的,扰动被用作权重的变化方向; 否则,权重沿相反方向改变(或根本不改变)。 因此串行扰动是对成本“coordinate descent”的方法,但是它是缓慢的并且需要全局协调:每个突触按顺序被扰动而要求其他保持固定。

总的来说,twiddling思想是比较简单的,但是在全局范围实现却很困难,并不是一个可行的解决方案。 (责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容