先找到自己喜欢的研究领域。你找到一本最近的ACL会议论文集(编者按:可以参考), 从中找到一个你比较喜欢的领域。在选题的时候,多注意选择蓝海的领域。这是因为蓝海的领域,相对比较新,容易出成果。 充分调研这个领域目前的发展状况。包括如下几个方面的调研:方法方面,是否有一套比较清晰的数学体系和机器学习体系;数据方面,有没有一个大家公认的标准训练集和测试集;研究团队,是否有著名团队和人士参加。如果以上几个方面的调研结论不是太清晰,作为初学者可能不要轻易进入。 在确认进入一个领域之后,按照建议一所述,需要找到本领域的开源项目或者工具,仔细研究一遍现有的主要流派和方法,先入门。 反复阅读本领域最新发表的文章,多阅读本领域牛人发表的文章。在深入了解已有工作的基础上,探讨还有没有一些地方可以推翻、改进、综合、迁移。注意做实验的时候,不要贪多,每次实验只需要验证一个想法。每次实验之后,必须要进行分析存在的错误,找出原因。 对成功的实验,进一步探讨如何改进算法。注意实验数据必须是业界公认的数据。 与已有的算法进行比较,体会能够得出比较一般性的结论。如果有,则去写一篇文章,否则,应该换一个新的选题。
建议3:如何写出第一篇论文? 接上一个问题,如果想法不错,且被实验所证明,就可开始写第一篇论文了。 确定论文的题目。在定题目的时候,一般不要“…系统”、“…研究与实践”,要避免太长的题目,因为不好体现要点。题目要具体,有深度,突出算法。 写论文摘要。要突出本文针对什么重要问题,提出了什么方法,跟已有工作相比,具有什么优势。实验结果表明,达到了什么水准,解决了什么问题。 写引言。首先讲出本项工作的背景,这个问题的定义,它具有什么重要性。然后介绍对这个问题,现有的方法是什么,有什么优点。但是(注意但是)现有的方法仍然有很多缺陷或者挑战。比如(注意比如),有什么问题。本文针对这个问题,受什么方法(谁的工作)之启发,提出了什么新的方法并做了如下几个方面的研究。然后对每个方面分门别类加以叙述,最后说明实验的结论。再说本文有几条贡献,直播,一般写三条足矣。然后说说文章的章节组织,以及本文的重点。有的时候东西太多,篇幅有限,只能介绍最重要的部分,不需要面面俱到。 相关工作。对相关工作做一个梳理,按照流派划分,对主要的最多三个流派做一个简单介绍。介绍其原理,然后说明其局限性。 然后可设立两个章节介绍自己的工作。第一个章节是算法描述。包括问题定义,数学符号,算法描述。文章的主要公式基本都在这里。有时候要给出简明的推导过程。如果借鉴了别人的理论和算法,要给出清晰的引文信息。在此基础上,由于一般是基于机器学习或者深度学习的方法,要介绍你的模型训练方法和解码方法。第二章就是实验环节。一般要给出实验的目的,要检验什么,实验的方法,数据从哪里来,多大规模。最好数据是用公开评测数据,便于别人重复你的工作。然后对每个实验给出所需的技术参数,并报告实验结果。同时为了与已有工作比较,需要引用已有工作的结果,必要的时候需要重现重要的工作并报告结果。用实验数据说话,说明你比人家的方法要好。要对实验结果好好分析你的工作与别人的工作的不同及各自利弊,并说明其原因。对于目前尚不太好的地方,要分析问题之所在,并将其列为未来的工作。 结论。对本文的贡献再一次总结。既要从理论、方法上加以总结和提炼,也要说明在实验上的贡献和结论。所做的结论,要让读者感到信服,同时指出未来的研究方向。 参考文献。给出所有重要相关工作的论文。记住,漏掉了一篇重要的参考文献(或者牛人的工作),基本上就没有被录取的希望了。 写完第一稿,然后就是再改三遍。 把文章交给同一个项目组的人士,请他们从算法新颖度、创新性和实验规模和结论方面,以挑剔的眼光,审核你的文章。自己针对薄弱环节,进一步改进,重点加强算法深度和工作创新性。 (责任编辑:本港台直播) |