大范围内设备和平台的可移植性,因为深度学习模型需要在很多不同的的地方运行:从笔记本电脑和能通过大型网络互联和大量的计算能力服务器群,到通常是连接相距甚远设备的移动通讯工具,这些将更少依赖网络互联和相当少的计算力。 对于 AWS 的开发者和很多我们的客户而言,有三件事同样重要。经过慎重地评估,我们选择 MXNet 作为亚马逊的深度学习框架,我们计划在现有和即将推出的新服务中广泛使用它。 我们已经开展了一系列工作,作为承诺的一部分,我们将通过贡献代码(已经做了很多工作)积极地促进和支持开源,改进在线和 AWS 的开发人员体验和帮助文档,并持续改进可视化、开发环境,帮助开发者更方便地从其他框架迁移进来。 MXNet 介绍 MXNet 是一个全功能,灵活可编程和高扩展性的深度学习框架,支持深度学习模型中的最先进技术,包括卷积神经网络(CNN)和长期短期记忆网络(LSTM)。MXNet 由学术界发起,包括数个顶尖大学的研究人员的贡献,这些机构包括华盛顿大学和卡内基梅隆大学。 「MXNet 是在卡内基梅隆大学中诞生的,它是我所看到的最完美的深度学习可扩展框架,它可以让计算机科学更加美好。让不同学科,不同工作的人们团结在一起。我们对亚马逊选择 MXNet 感到兴奋,MXNet 将由此变得更加强大。」卡内基梅隆大学计算机科学系主任 Andrew Moore 说道。 MXNet 缩放 深度学习框架在多核心处理器中的运行效率是其性能的重要指标。更高效的缩放(Scaling)可以让训练新模型的速度显著提高,或在相同的训练时间内大幅提高模型的复杂性。 这正是 MXNet 的优势:我们正在使用越来越多的 GPU 训练图像分析算法 Inception v3(在 MXNet 中实现并在 P2 实例上运行)。MXNet 不仅具有所有已知库中最快的吞吐量(每秒训练的图像数量),而且吞吐量提高几乎与用于训练的 GPU 数量成正比(比例为 85 %)。
用 MXNet 进行开发 除了高可扩展性,MXNet 还提供混合编程模型(命令式和声明式),同时兼容多种编程语言(包括 Python、C ++、R、Scala、Julia、Matlab 和 Java)的代码。 MXNet 中的高效模型和可移植性 计算效率很重要(并且与可扩展性紧密相关),但是内存使用量也同样重要。在运行多达 1000 层的深层网络任务时,MXNet 只需消耗 4GB 的内存。它还可以跨平台移植,并且核心库(具有完整功能)可以整合进单个 C ++源文件中,并为 Android 和 iOS 进行编译。你甚至可以使用 Java 扩展在浏览器中运行它。 更多内容 有关 MXNet 的更多细节可以关注 MXNet 主页,或 GitHub 以获得更多信息,你可以立即使用 Deep Learning AMI,或在你自己的设备中进行开发。亚马逊将在 11 月 30 日于拉斯维加斯 Mirage 酒店举办机器学习「State of the Union」会议,随后也会在 AWS re:Invent 中开展有关 MXNet 的研讨会。 MXNet 主页: GitHub 地址:https://github.com/dmlc/mxnet Deep Learning AMI:https://aws.amazon.com/marketplace/pp/B01M0AXXQB ©本文为机器之心编译文章,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |