本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【图】业界 | 为什么自然界是我们理解人工智能的最优导师?

时间:2016-11-21 22:45来源:天下彩论坛 作者:www.wzatv.cc 点击:
对生物体而言,进化是一个多代累积的基因改变过程,在每一代的进化过程中会有基因的剔除和基因的增加。在每一次的基因改变后,只有那些拥有适宜于生存环境基因的变异生物能

对生物体而言,进化是一个多代累积的基因改变过程,在每一代的进化过程中会有基因的剔除和基因的增加。在每一次的基因改变后,只有那些拥有适宜于生存环境基因的变异生物能够存活,而那些拥有不适宜生存环境基因的变异生物则无情的被环境淘汰。这个过程就是一次自然选择的过程。在自然选择中,生物的适应能力固然重要,但能恰到好处的拥有适宜于当前环境的特征才是关键,就像在洪水爆发的时候,能够用鳃呼吸的鱼才可以生存。

相比而言,工程设计则是一个严谨规划的过程,尽力确保过程中每一步达到预计目标。然而,随着人工智能的出现,机器学习算法的迭代具有类似生物进化的功效,使得生物进化和工程设计过程的融合成为可能。

具体细看自然进化的过程和机器学习的过程,我们可以把机器学习所需的数据(data)及其规格化处理类比为生物进化过程中的「环境」,把机器学习过程类比为「自然选择」。机器学习在训练的时候分为监督式学习、非监督式学习、增强学习、聚类、决策树以及深度学习的其他方法。

在自然进化过程中,虽然不同的生物在遇到相同的生存难题时会进化出各自不同的特征,但最终它们将进化出类似的特征来解决其所遇到的生存难题。鲨鱼和海豚从不同的原始生物种类进化而来,却具备相似的伤口愈合机制。在人工智能领域,我们同样能看到与此类似的现象。例如:K-均值聚类算法常被用来处理图像分割问题,通过对原始无标签的输入数据(通常是图像)进行聚类直至相似特征的数据被合理的聚分至各族群内。如果你把这个问题交给 10 个机器学习工程师,并且是处理同样输入数据集,很可能他们 每个人使用的算法都不相同,但并不妨碍最终的聚类结果。从这个维度来比较自然选择和机器学习过程,两者何其相似。

  

【图】业界 | 为什么自然界是我们理解人工智能的最优导师?

那么,这与商业有何相关呢?

因为机器学习技术已经有了商业化的应用,目前机器学习在商业化应用上遇到的难题是如何安全稳妥并富有效率的运用机器学习技术。

回顾科技的发展历史,大自然给了工程师们很多启发。这里,我将给出一些在商业上运用进化理论来理解人工智能潜在影响的范例。

趋异进化:人工智能下的趋异进化,是指在这个过程中很难将同一个数据集来处理数据集类型相似的问题。就如:你用 ImageNet 数据集来处理一个目标识别的问题,最后的识别结果非常好,但这并不能够保证你在处理视频识别和面部识别时依旧可以有非常好的识别结果。

趋同进化:人工智能的趋同进化是指一些看似不同类型的数据集处理过程,其实是同一类问题。例如:Google 借助搜索关键词来优化检索时的拼写检查功能。Google 通过跟踪用户的检索词,当你检索词的拼写和大部分人有差异时,将会出现检索词推荐,这个优化过程很人性化。

捕食者和被捕食者或者寄生和宿主共同进化:在人工智能里,如果两个人工智能算法一起迭代,会出现很多意想不到的结果。网络安全公司(如 Cylance 和 Bromium)正在开发如何运用机器学习算法来实现不间断的系统训练,从而可以第一时间识别新的网络安全隐患。

目前,只有少量的 AI 公司在帮助我们更高效的工作(X.ai 可以帮助我们规划繁忙的工作生活,Diffbot 能帮助我们更智能的管理网站等等),但这些应用还只是处于起步阶段,能够成熟到用户可以方便使用的程度,atv直播,仍需极大的提升。或者说这也是它们的「进化」过程。

AI 领域还有待开垦,atv,而生物界自然选择的过程为我们提供了一个很好的框架来理解机器学习的进化发展,并为之到来做好准备。与此同时,公司的领导层需要着重考虑如何借助 AI 来提升公司业务,并且招募相关的人才来研发出具有创新性的解决方案。

©本文为机器之心编译文章,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):[email protected]

投稿或寻求报道:[email protected]

广告&商务合作:[email protected]

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容