用户画像分析包括人口统计学特征分析、用户个人兴趣分析、用户商业兴趣分析。人口统计学特征包括性别、年龄、学历、收入、支出、职业、行业等;用户个人兴趣指个人生活兴趣爱好的分析,如听音乐、看电影、健身、养宠物等;用户商业兴趣指房产、汽车、金融等消费领域的兴趣分析。用户画像这部分的数据需要进行相相关的画像数据采集,才可以支撑比较详细的画像分析。 本文主要介绍了APP基础的数据分析体系,还有更多的指标体系需要根据APP的特性进行特殊设计。比如,搜索APP需要关注与其特性相关的指标如搜索关键词数、人均搜索关键词数等。另外,还有一个非常值得关注的是,很多产品经理或者运营人员认为本文提到的很多指标,产品上线后便自然可以看到,这是一个非常常见的误区。因为,本文提到的大多数指标,如果不进行数据打点上报,并进行相关的数据开发统计,就不能看不到相关的数据报表。 所以,产品经理在产品上线前一定要规划好自己所负责的产品的数据体系,驱动开发进行相关的数据采集上报,并在运营过程中,动态优化和丰富数据体系。 作者:傅志华,为某大型互联网公司数据中心总经理,同时任中国信息协会大数据分会理事,北京航空航天大学软件学院大数据专业特聘教授,中科院管理学院MBA企业导师。曾为腾讯社交网络事业群数据中心总监以及腾讯公司数据协会会长,在腾讯前为互联网数据分析公司DCCI互联网数据中心副总裁。傅先生谙熟数据分析和数据挖掘方法,在数据驱动企业数据化运营和营销方面以及大数据驱动的新商业模式研究有丰富的经验。 (责任编辑:本港台直播) |