第二,AI系统必须要解释推理的过程,有一些系统深度学习的系统已经运转得非常好了,但是,对于终端用户,我们必须要了解系统预测的时候重视的是什么,我们必须进行解释,这个系统到底主要处理的是什么,像在视频方面,到底想了解的事件是什么,目前在美国人工智能的竞赛,包括我的团队也参加了这个竞赛。 第三,让 AI 系统变强,强化这个系统。这样能够避免一些错误的设计,有些时候这些错误是我们意识不到的,比如说系统到底会进行一些什么样的部署,我们有的时候并没有意识到我们意识上的空白,我们要不断地发展 AI 系统,我们要增强人工智能系统,最终我们必须要证实一些方法论。由于软件系统不能证实软件的正确性,我们要进行一些实验一些测试,但测试并不能解决有效性正确性的问题,因为 AI 的软件非常复杂的。机器学习是一个挑战,因为训练情况的不同,可能测试的结果也会有不同。 2. 人机交互界面:Human-in-the-loop
接下来的挑战就是用户界面的问题,虽然好莱坞的那些电影有各种各样的结局,我觉得人工智能不会牵扯到一些全部自动化的体系。例如你开车,要接受指示,现在仍然人在开车,所以你是在执行这个行动。像自动机器人,就是在回路上,你也是在监控计算机的行动。
另外一点我们很关注的,人机协作,这是人和生物硬件之间的合作。你可能会听说过“半人半马的象棋活动”,半人马系统能够打败人类,也能够打败象棋的机器系统,它其实是补充了人类对于象棋知识的不足。
这是非常有意思的一个项目,蛋白质折叠游戏。我们可以通过这个游戏发现蛋白质,我们现在从生物上理解这个蛋白质就是理解它的结构。有不同的神经系统体系,这是蛋白质能量优化的算法,但是这是一个非常困难的搜索游戏。华盛顿大学开发了一款游戏,让人们能够提供一个指导,并且能够指导游戏的局限性,能够让这个优化器能够更好地工作。这种人机协作比单独的人或者单独机器工作要更好,2011 年的时候,用这样一个技术,在三周就解决了艾滋病病毒酶问题。这对于我们未来是非常重要的,我们会跟计算机更好地合作,这样能够拥有超能量,这是现在所没有的。 3. 有关常识的挑战
接下来谈谈第三大挑战,常识。 如果要跟计算机合作的话,要跟机器人合作的话,我们必须要有非常好的用户界面和它们进行合作。有一个问题,计算机必须要了解人类的意图,通常传统的界面,人给计算机下指令,计算机接受这种指令,命令和接受的过程。
但是,现在要让计算机了解人的意图,像米老鼠它说“给我拿水来”,拖把就把水“拿过来”,开奖,但是最后米老鼠快被淹死了,这就是一个很有意思的故事——人工智能没有很好地理解说话者或者说人的意图。
那么,计算机怎么能了解人的意图?这就是常识的问题。什么是这方面的常识?有的人不知道,是不是所有人都同意这一点,很难。 但是,我认为我们需要让计算机了解所有的人类都了解的、无论是宽泛的还是浅显的知识,无论是人类的行为,还是一些具体的物体。
我们必须让计算机了解普遍的知识。Cycorp 开展的研究,已经 30 多年了——我当教授也30 多年了,能够让计算机理解百科全书的每一篇文章,是人工创造知识的基础。结果有点令人失望。我们有没有其他的选择?是不是要用机器学习来获得常识?因为“常识”的覆盖面很广,需要我们付出巨大的努力,哪怕我们已经在 AI 方面取得很多的进展,像智能电话、还有物联网。 (责任编辑:本港台直播) |