在 2004 年,他在《先进工程材料》杂志上发表了他的研究结果(Yeh, J.-W.; Chen, S.-K.; Lin, S.-J, et al. Advanced Engineering Materials. 6 (5): 299–303),现在这篇文章引用已经超过了800次,这在材料科学领域是一个非常了不起的数字。 利用“高熵合金”开发的高寿命刀具(图片来源:) 叶均蔚教授2004年《先进工程材料》论文的引文报告(图片来源:Web of Science) 然而,从另一个角度看,这是一个既引人入胜却又让人望而生畏的研究领域。想象一下,将大约60余个商业合金中常见的元素选出5个进行等比例混合,组合数目将达到1040种。而将规则稍加放松,允许元素比例在5%内变化,组合数目将跃增到10120种。位于德国杜塞尔多夫马克思普朗克铁研究所的迪尔克拉贝(Dierk Raabe)坦言,“这是一片我们尚未涉足的巨大宝库。” 那么问题来了,高熵合金到底是一种什么样的神秘物质呢?它与我们身边常见的合金有何不同之处? 毫不夸张的说,从青铜时代走来,合金构成了现代世界的支柱。位于土耳其南部海岸附近的乌鲁布伦沉残骸(Uluburun Wreck)是当前世界上最为古老的沉船遗址之一。这个以附近的一个小镇命名的沉船遗址可以追溯到青铜时代中期的公元前1300年。 乌鲁布伦沉残骸(Uluburun Wreck) 1982 年,一名年轻的潜水员首先发现了这一遗址,船上携带了一种奇怪的货物:9 吨铜与 1 吨锡。当然,如果你已经知道这其实是青铜的配比,那么或许你就不会大惊小怪了。 这意味着,三千多年以前的人们已经知道,向一种金属里加入少量的另一种金属元素就能得到新的合金材料。古人们这么做的初衷何在? 最主要的原因是,常见的纯金属强度太低,以至于没法满足日常应用的需求。从材料科学的角度看,金属单质中相同的原子构成的原子层之间可以轻易地发生滑移,因而即使在受到很小的作用力时,也会轻易地发生形变。 当然,解决纯金属太软的办法也很简单:向一种主要纯金属中加微量的其他元素制成合金,就像我们三千多年前的老祖宗们做的那样。向金属中加入了其他原子之后,原子层的滑移受到了阻碍,因而材料的强度能得以提升。 举个例子来说,一份锡加九份铜,能得到青铜,而向铝中加入微量的镁与硅,可以得到中等强度的铝门窗材料。难怪材料老师常常自黑说,搞材料若烹小鲜——鸡肉里加点花生,加点调料才能做成美味的宫保鸡丁。同样的,往铁里加点铬,加点镍就能得到抗氧化,表面光洁的不锈钢。这一想法为我们提供了许多用于支撑现代技术的新材料。下图中就举了几个生活中非常常见的例子。
这就是制造合金的秘密:具有合适强度,耐久性和可加工性的合金组成了我们现代世界中从餐具到灯柱乃至桥梁在内所有一切的基础。 但是传统合金就是我们的极限了吗?冶金学家和材料学家们对这种约定俗成的智慧越来越表示怀疑。 与此同时,传统的合金材料库已经无法完全满足越来越严苛的应用场景。举个例子来说,喷气式飞机引擎叶片必须要承受极高的温度,同时还要承受飞速的旋转带来的巨大离心力。这就意味着叶片材料必须在高温下仍然能保持一定的强度。
低成本高熵黄铜零件 实际上,美国空军一直在寻找一种能够提高喷气发动机工作温度的合金:涡轮机越热,它的工作效率越高。而且,从获得更好的燃油经济性角度来看,改进发动机比制造更轻的机翼材料要更加划算。
高熵合金的潜在应用包括喷气机涡轮叶片与核聚变反应堆 (责任编辑:本港台直播) |