前两天烟台的“中国计算语言学大会”上有一大串的演讲,每个题目都是跟深度学习相关的:深度学习跟机器翻译、深度学习跟问答、深度学习跟语法分析、深度学习跟情感分析,等等。我对中国的人工智能的希望是非常之大的。现在有哪些新的技术?有序列到序列的学习、有注意力模型,一个礼拜之前谷歌 DeepMind 在《Nature》上面发表了 DNC 方法,它有局限性,还是基于 Von Neumann 算存分离的架构。做研究的话可以往这边看。我下面会介绍更符合人脑认知和思维的算存一体的方法和思路。
深度学习未来展望:整合符号逻辑和深度学习,有望解决黑箱、常识嵌入,以及逻辑推理规则的自动学习问题
最后谈谈未来展望。关于应用,昨天的新智元百人会 AI 领袖闭门峰会听大家讲了很多,我补充一些研究和技术的内容。关于人工智能应用,在四天前,在座的Thomas Dietterich 教授告诉我,他也参与了这个报告的一些写作。美国白宫政府发出来这个报告,做应用的一定要好好看一看,它的最终结论对投资界影响非常大,跟中国推广的人工智能方向是相符的。Deep Learning 作为一个非常大的标题列出来。今天早上跟 Thomas Dietterich 教授谈了一下,他承认对于很多做传统的人工智能的专家来讲 Deep Learning 的巨大成功确实是一个 Surprise。
Automated Science。把所有的物理科学材料数据用机器看一遍,能不能得出牛顿定律?像以前伽利略用望远镜看到星星的运动,经过科学的研究,总结出来一些星球运行的定理,牛顿根据这些材料总结出牛顿定理。 这些能不能用人工智能做出来?这是很多人想的问题。金融方面,人工智能和深度学习最近刚火起来,在美国做金融的极高端的专家找过我,我不便讲太多,这个领域做金融的都在看。
从研究和技术方面来讲,为了让大家看到将来的趋势,或者将来有影响的研究和技术,我们要先看现在的深度学习和AI的方法有些什么样的局限性。 把局限性看懂以后,就可以知道用什么方法来克服它们。现在机器学习很大的一个局限性是,几乎所有成功的方法都需要有非常大量的DATA,这种数据一定要输入输出全部匹配好(至少在全序列的水平上); 不匹配好的话,目前没有任何方法能够做得非常成功。这是非监督学习, 没时间讲了。下面还有一大串的其他局限,比如 Black box,现在有很多研究在破这个黑箱,走出现有神经网络的框架,要能够把以前大家所做的深度 Bayes 的方法加上一大串其他的方法整合到一起,就有望解决黑箱的问题。虽然有的研究人员觉得黑箱问题不是那么重要,但我认为黑箱问题很重要。同样重要的一点:神经网络现在非常难把知识自动扩大,就像小孩长大,他的知识和推理的能力一步步扩大,但是现在的人工智能这个能力几乎还没有。我跟很多研究人员交流,怎么能够把基于神经计算的深度学习跟符号逻辑连在一起,因为把逻辑关系搞清楚就能解释知识的应用和推理的过程。 这就是真正的理解。现在所有我看到的深度学习做的所谓的阅读理解都不是我现在讲的这个意义上的真正的理解。
【此图片为新增内容】 (责任编辑:本港台直播) |