机器之心:很多公司在开发语音助手时更倾向于基于已有的平台开发软件和服务,因为更简单,你们为什么要选择做更难的硬件呢?对于智能助手来说,硬件实体带来的最主要区别是什么? Emotech:一方面实体机器人有多方面优势,包括数据收集和情感互动等, 我们尤其在 Olly 的动作方面做了很多吸引人的有趣设计;另一方面我们团队很多人都有创造一个实体机器人的梦想。最后就像滑雪一样,高级道的缆车排队的人远比低级道少得多。 机器之心:你们的产品应该是做开放域问题的 chatbot, 请问开放域 chatbot 难点有哪些?你们成功解决了哪些? Emotech:我们的产品和 chatbot 还是有很多不同点。但就 chatbot 来说,基本的挑战主要集中在 1. 理解语义; 2. 确定内容; 3. 确定如何表达。 对于我们而言,在场景理解,情感和数据有效性等方面有很多优势,这对 Olly 和用户互动上有很大的帮助。 机器之心:开放领域的 chatbot 比特定领域的 chatbot 难度更大,为什么选择这个难度更大的领域而不是先从哪个领域内的 chatbot 做起呢?比起巨头,你们又有哪些优势? Emotech:第一,我们做的事情和 chatbot 有一些共同点,但还是很不一样的; 第二,仅从难度方面探讨,难度小的事情没什么意思; 第三,相比起「开放域」或「通用」,我们更倾向于认为我们是找到了一个简洁优美,并且高度可扩展的方向。 机器之心:实体类的 chatbot 可以获得更丰富的 context 信息,包括语调,表情,历史对话,位置等,处理这么多类型的 context 是一个比较困难的问题,你们如何处理? Emotech:Olly 的核心 AI 引擎本质上就是多重模态的;我们通过低层算法处理各种输入,然后用高层算法合并。举个例子不同算法处理音频和视频信息,而提取出来是什么人正在说话。 机器之心:要实现深层次的个性化需求需要来源广泛的各类数据,请问作为作为创业公司你们如何获得?或者是如何与其他公司合作? Emotech:做一个令人兴奋的产品是关键,大家会觉得一起合作有前景,有意思。这里面既有我们寻求的合作伙伴,也有一些是看到我们的报道后,主动找到我们的。 机器之心:在获取多样化的数据之后,atv,实现有意义的个性化还需要深层挖掘各数据之间的关系,并具有一定的长时记忆和推理能力,这些都是技术上的难点,请问 Olly 在技术上有什么创新? Emotech:我们的 AI 引擎是一个高度可扩展的层级结构,这个架构有一个很大的好处就是支持我们对不同类型数据进行处理。 机器之心:你们如何保护用户的隐私?用户的历史数据你们如何处理?在用户隐私和提供个性化服务之间,你们的平衡理念是什么? Emotech:我们对用户的隐私极度重视。首先我们只收集经过用户同意的数据,而且用户拥有对自己所有数据的完全控制;其次我们尽量进行本地化实时处理,如果需要通过云端,则尽量只传输提取后的特征数据,而且本地和云端都会经过严格的加密。 机器之心:human-inspired computing 是否可以理解为用机器学习理解问题?数据规模和质量的挑战都很大,如何解决问题? Emotech:并不一样,比如飞机并不需要像鸟一样扇动翅膀,具备理解能力的算法并不需要像大脑一样。深度+一些特定的增强式学习方法会被用到。 关于团队 机器之心:目前公司规模及技术人员比例是怎样的? Emotech:目前 15 名全职员工,会继续扩中到 25-30 名左右,其中 80% 为技术人员科学家。英国和美国是全球人工智能储备最多的国家,Emotech 会继续以伦敦为核心研发中心,同时开始向硅谷发展,吸收优秀的人工智能专家及市场领域的资深人员,为明年的年产与销售做准备,努力让 OLLY 成为世界上最有趣的个人机器人。 机器之心:Zaff 角色多重,这是保持创造力的方式吗? (责任编辑:本港台直播) |