其次,DNN在大数据上有非常优异的表现,伴随着数据量的不断增加,GMM模型在2000小时左右便会出现性能的饱和,而DNN模型在数据量增加到1万小时以上时还能有性能的提升; 另外,DNN模型有更强的对环境噪声的鲁棒性,通过加噪训练等方式,DNN模型在复杂环境下的识别性能甚至可以超过使用语音增强算法处理的GMM模型。 除此之外,DNN还有一些有趣的性质,比如,在一定程度上,随着DNN网络深度的增加,模型的性能会持续提升,说明DNN伴随模型深度的增加,可以提取更有表达性、更利于分类的特征;人们利用这一性质,提取DNN模型的Bottle-neck特征,然后在训练GMM-HMM模型,可以取得和DNN模型相当的语音识别效果。 DNN应用到语音识别领域后取得了非常明显的效果,DNN技术的成功,鼓舞着业内人员不断将新的深度学习工具应用到语音识别上,从CNN到RNN再到RNN与CTC的结合等等,伴随着这个过程,语音识别的性能也在持续提升,未来我们可以期望将可以和机器进行无障碍的对话。 雷锋网注:本文由大牛讲堂授权雷锋网发布,如需转载请联系原作者,j2直播,并注明作者和出处,不得删减内容。有兴趣可以关注公号地平线机器人技术,了解最新消息。 (责任编辑:本港台直播) |