本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

atv直播:【图】李飞飞高徒Andrej Karpathy为大家答疑解惑

时间:2016-09-09 23:07来源:本港台现场报码 作者:开奖直播现场 点击:
【图】李飞飞高徒Andrej Karpathy为大家答疑解惑,老丁解惑师兄公益是谁呀,梦想世界潜力高徒称谓,李克绍伤寒解惑图片

  

atv直播:【图】李飞飞高徒Andrej Karpathy为大家答疑解惑

  编者按:李飞飞高徒Andrej KarPathy2015年在斯坦福大学获得计算机科学专业博士,2016进入OpenAI工作,主要研究兴趣为:深度学习,生成模型和强化学习。2011至2015年先后在Google Brain,Deepmind及各大DL实验室实习过,在学习与工作方面经验颇丰。本文是在Quora为广大机器学习研究领域学子答疑解惑,希望对大家有所启发。

  学习篇

  您是如何学习研究ML/DL的?在学习DL过程中,您最喜欢的书籍有哪些?

  我曾经在数据科学周刊的访谈中谈论过这个话题。我们长话短说,我以前是想做量子计算这一块儿,之后觉得稍有点灰心丧气,并且意识到AI是我想要研究的最重要的“元”问题。

  在我攻读博士学位期间,DL方面没有太多可供参考的书籍。现在有Ian Goodfellow等深度学习方面的书籍及其资料来源(例如,许多演讲,CS231n等)。

  我个人不太过分依赖参考书。我喜欢Bishop的书,在读博期间曾从头到尾读过好多遍,还有Sutton的强化学习(Reinforcement Learning)一书,这本书我在几周内快速翻阅了一遍,反复实践有关ReinforceJS章节的知识。不过,遗憾的是,这本书在策略梯度(Policy Gradients)这一块儿讲得略少,而我们在研究中用到这方面的知识还是蛮多的,不管怎样,这本书都为我在DL方面的学习打下了良好的基础。

  到现在为止,我发现,想要学会许多知识的诀窍就是反复实践已经学到的理论知识,正所谓实践出新知嘛。无论何时,当我读到一些知识,我会想象着自己已经理解透彻了,然后强制自己反复实践,这种方法总会给我带来新的有趣的洞见。这是我最爱的学习方法。

  您个人偏爱哪一种深度学习框架?

  在读博期间,我在学习深度学习框架过程中经历过几个转型期。起初是使用Matlab,当时每个人都使用这个软件。不过,遗憾的是,Matlab不是一种真正的语言,当时所有人都为此嘲笑我,所以我转而学习Python/numpy,手写出我自己所有的反向传播算法代。不过,不幸的是,numpy不适用于GPU,因此,学习Python也行不通。

  之后,我开始学习Torch,我当时非常喜欢这个计算框架,到现在还是很喜欢。Torch比较简单:你可以在CPU或GPU上透明地以各种方式操作Tensor 对象,并且可以使用这种简易的深度学习专门转化器。你几乎可以理解所有的内容,并对所学到的知识进行检测,改善,都是行得通的。

  我现在使用TensorFlow,OpenAI的所有研究者都在使用这种系统。说实在话,我觉得我的代变得越来越复杂。相比使用Torch,我现在要花费很多时间来排除故障。我现在还处于学习阶段,不过,我觉得现在遇到的难题都是暂时的。

  我们再探讨的深入一些,atv,我感觉到在学习TensorFlow的过程中,自己放弃了很多东西(比如,我不能再轻而易举地处理原始梯度,不能全面检测代码库,不能再简单地运用任意命令代码创建网络层,此外,编写代码要花费更多的时间),但是,我的收获付出并不对等。尽管这样,我选择TensorFlow就像下了一个长期的赌注,现在正在这条路上变得越来越专业。如果你不想做出太疯狂的选择,喜欢自己小型,敏捷,透明,快速的代码,Torch依然是个不错的选择。

  您是如何学习强化学习(RL)的?

  关于RL,我在博客上放过一些相关链接:Deep Reinforcement Learning: Pong from Pixels。这篇博文简要回顾了RL背后的基本思想。更专业一点,我推荐从Sutton的书入门打基础,再看John Schulman或Pieter Abbeel近来的一些公开课(例如,蒙特利尔深度学习夏令营的公开课就很棒),然后从头反复实践DQN或策略梯度方面的知识。利用OpenAI的Gym慢慢适应整个研究环境。

  遗憾的是,atv,在许多新的领域,很难做到在研究领域之外实验突破。如果你决心要投身AI研究的话,我认为,你肯定想要与该领域更有经验的人合作。在RL研究领域更是如此,因为关于如何利用函数,基线,如何设置实验步骤,如何有效地排除故障,等等,都鲜有诀窍,这些在相关论文中都得不到系统的解答。相反,在一个领域的研究者中,这些知识都仅算得上常识。当然,这并不是说你真的无法自己实现某一领域的突破,只是利用1对1学徒学习这种方式可以少走很多弯路了。

  您能否为一个有志成为一名机器学习工程师的本科生提供一些建设性的意见?

  本科生往往太注重分数(我曾经也犯过相同的错误)。我将开始削减一些具体的项目,将这些项目记录在Github或博客上。我觉得,有自己参与过的具体工作和项目是非常宝贵的经历。

  您认为,有哪些方面在ML发展过程中没有受到重视?

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容