科学家们已经知道,伴随着视觉、运动和听觉学习,相关脑区中的树突棘会发生变化。因为树突棘是突触的一部分,所以树突棘的变化可以表征突触的变化。但是,前人的研究只观察了树突棘,而没有观察与之连接的轴突小结,所以这些突触接受的信息究竟来自哪些神经元,仍然是未知的。因此杨扬和刘丹倩采用双色双光子成像技术,也就是用两种颜色的荧光同时标记了突触前和突触后神经元,以便探察所观察突触的连接信息。 在实验中,她们标记了来自不同区域的突触前神经元和位于听觉皮层的突触后神经元,并观察了它们之间形成的突触在恐惧学习之后发生的变化。她们发现,只有外侧杏仁核(突触前)与听皮层神经元(突触后)形成的突触,在听觉恐惧学习后数目有明显增加;而其他区域与听皮层神经元形成的突触没有显著变化。这就说明,她们发现的外侧杏仁核—听皮层通路中的突触编码了听觉恐惧记忆,反过来,听觉恐惧记忆是通过在侧杏仁核-听皮层通路中添加突触的方式来存储的。 由此,杨扬和刘丹倩还发现了一个新突触形成的规律。在成年动物的大脑皮层中,神经元的数量不会再增加,所谓的可塑性都是来自突触的变大、变小、形成或消失。在观察突触变化的时候,她们发现,98%以上的新形成的突触都遵循“部分新增”的规律——也就是说,这些新突触不是全新的,而是半新半旧的:或是在旧的轴突小结上新增一个树突棘,或是在旧的树突棘上新增一个轴突小结。这个“旧房改造”式的形成新突触的方法,既可以节省空间、细胞能量,又可节省“建材”——结构蛋白数量。杨扬说:“我们在所有与学习有关或无关的突触变化中都看到了这个现象,所以这可能是成年动物大脑中突触形成的普遍规律。” 《自然-神经科学》的主编凯文·斯尔瓦称赞这是“一项极具价值的研究”。蒲慕明透露,基于中科院脑科学与智能技术卓越创新中心的合作机制,已有北京的人工智能科学家开始基于该研究成果研发新的人工智能存储网络。 延伸阅读 ① ②
投稿、授权等请联系:[email protected] 您可回复"年份+月份"(如201510),获取指定年月文章,或返回主页点击子菜单获取或搜索往期文章。
赛先生由百人传媒投资和创办,文小刚、刘克峰、颜宁三位国际著名科学家担任主编,告诉你正在发生的科学。上帝忘了给我们翅膀,于是,科学家带领我们飞翔。 微信号:iscientists ▲ 长按图片识别二维码关注我们 (责任编辑:本港台直播) |