本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

j2开奖直播:Prisma虽昙花一现,但人工智能平民化时代才刚刚开始

时间:2016-08-10 14:03来源:本港台直播 作者:开奖直播现场 点击:
先有AlphaGo在数亿人的眼皮底下,五战四胜将人类从围棋神坛上“拉下马”,后有Prisma风靡全球,一时间人人皆开了梵

Prisma虽昙花一现,但人工智能平民化时代才刚刚开始

先有Alpha Go在数亿人的眼皮底下,五战四胜将人类从围棋神坛上“拉下马”,后有Prisma风靡全球,一时间人人皆开了梵高、葛饰北斋的“金手指”,深度神经网络渐渐开始从幕后走到台前,从不可见变得可见可触,从赋能于企业走向“赋能”与每一个普通人。

如果说Alpha Go还让普通人仰之弥高,可望不可及的话,那么上至总统下至中学生,人人皆可“调戏”的Prisma可谓是第一款人工智能平民化应用。在手机的硬件军备竞赛人困马乏、了无新意的时代,利用人工智能技术,通过“云端算法”的远程助力,可以在硬件瓶颈之下大幅提高手机的“智能化”水平。

如果说Alpha Go出尽风头是因为背靠Google在深度学习领域的深厚功底,成功非一般创业公司可复制,那么四人团队一个半月时间内开发出的Prisma则意味着:站在人工智能领域前人的成果之上,小团队也有可能touch the sky。

将卷积神经网络应用于“图片合成”乃至“艺术品滤镜”,Prisma并不是第一个。早在去年,DeepArt团队的三名成员就通过两篇论文《Texture Synthesis Using Convolutional Neural Networks》和《A Neural Algorithm of Artistic Style》分步拆解,提出了合成名画风格的照片的具体方法。去年上线的DeepArt.io也得到了WIRED、The Washington Post等媒体的广泛报道,只不过由于是网页版收费服务、处理时间长达半个小时,所以未能如Prisma这般引爆流行。

卷积神经网络是如何生成“星月夜滤镜”?

即使将卷积神经网络用于“艺术品滤镜”,Prisma也不是第一个。这个领域的先驱是DeepArt团队,几篇论文记录了它们从“物体识别——纹理合成——风格提取——图片合成”一步步的研究轨迹。也像本港台直播们展示了用于识别猫的图片的卷积神经网络是如何用来让《星月夜》变成一款滤镜的。

Prisma虽昙花一现,但人工智能平民化时代才刚刚开始

不同光照环境之下的同一张人脸 

同一张人脸在不同光线之下,轮廓、形状可能完全不同,而物体识别的难点也就是在不同的变量(比如光照条件)之下对物体存在的感知,这意味着神经网络要把图片的内容从风格中抽离出来,也意味着物体识别的神经网络中内在地存在着Prisma的运作机制:从图片中提取艺术风格特征。

问题是如何把梵高的《星月夜》中旋流不息的笔触与梦幻一般的用色“抽象”成一种风格滤镜,然后用在所有的照片之上?这就涉及到卷积神经网络的“过滤原理”。

就像Alpha Go的12层神经网络划被划分为负责选择落子的‘策略网络’(policy network)和则负责计算棋面优劣的‘价值网络’(value network)一样。卷积神经网络也是通过一些可供“调教”的参数,分层处理图片以便实现某些目的,例如目前应用最为广泛的物体识别,图片分类,也可以用于图片降噪或去模糊。

Prisma虽昙花一现,但人工智能平民化时代才刚刚开始

卷积神经网络运行原理图示

也正如其开奖直播的人工智能神经网络一样,卷积神经网络的运行方式是前向分层处理。一张图片相继通过神经网络的各个分层,最后一层产生的图片即为最终结果。每一层都有一组参数,在运行过程中被不断训练。这些可以调教的参数决定了每个“过滤层”的功能。图像每经过一个“过滤层”都会产生一组“滤后图像”,被称为feature map(特征映射)。每一张feature map都代表了原始图像的某一特征(边缘、角度、轮廓等)。

通常,当一张图像经过了多层过滤之后,后面留下的特征会越来越抽象。例如,如果卷积神经网络被训练用于物体识别,更深层次的“过滤层”更能“感知”到物体的存在而非具体的像素值。

经过多年发展,用于物体识别的卷积神经网络表现已经越来越好,挑战门槛也越增越高。ImageNet图像识别挑战赛2014年的获奖者是一个有19层“过滤层”和相对更小过滤器的深度卷积网络,这就是DeepArt系统的基础VGG网络。

Prisma虽昙花一现,但人工智能平民化时代才刚刚开始

       人造纹理的合成步骤

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容